Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Rep ; 12(1): 10027, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1921705

ABSTRACT

High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.


Subject(s)
HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing/metabolism , Calreticulin/genetics , Calreticulin/metabolism , HIV Antibodies/metabolism , HIV-1/genetics , Mammals/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/metabolism
2.
Sci Rep ; 12(1): 2594, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1692553

ABSTRACT

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Subject(s)
Antibodies, Monoclonal/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Models, Immunological , SARS-CoV-2/immunology , Animals , Dogs , Drug Repositioning , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Madin Darby Canine Kidney Cells , Molecular Targeted Therapy , Neutralization Tests , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL